Probing the electronic and spintronic properties of buried interfaces by extremely low energy photoemission spectroscopy

نویسندگان

  • Roman Fetzer
  • Benjamin Stadtmüller
  • Yusuke Ohdaira
  • Hiroshi Naganuma
  • Mikihiko Oogane
  • Yasuo Ando
  • Tomoyuki Taira
  • Tetsuya Uemura
  • Masafumi Yamamoto
  • Martin Aeschlimann
  • Mirko Cinchetti
چکیده

Ultraviolet photoemission spectroscopy (UPS) is a powerful tool to study the electronic spin and symmetry features at both surfaces and interfaces to ultrathin top layers. However, the very low mean free path of the photoelectrons usually prevents a direct access to the properties of buried interfaces. The latter are of particular interest since they crucially influence the performance of spintronic devices like magnetic tunnel junctions (MTJs). Here, we introduce spin-resolved extremely low energy photoemission spectroscopy (ELEPS) to provide a powerful way for overcoming this limitation. We apply ELEPS to the interface formed between the half-metallic Heusler compound Co2MnSi and the insulator MgO, prepared as in state-of-the-art Co2MnSi/MgO-based MTJs. The high accordance between the spintronic fingerprint of the free Co2MnSi surface and the Co2MnSi/MgO interface buried below up to 4 nm MgO provides clear evidence for the high interface sensitivity of ELEPS to buried interfaces. Although the absolute values of the interface spin polarization are well below 100%, the now accessible spin- and symmetry-resolved wave functions are in line with the predicted existence of non-collinear spin moments at the Co2MnSi/MgO interface, one of the mechanisms evoked to explain the controversially discussed performance loss of Heusler-based MTJs at room temperature.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Future directions in standing-wave photoemission

Over the past decade, standing-wave photoemission (SW-XPS) has evolved into a powerful and versatile non-destructive technique for probing element-specific electronic, magnetic, and structural properties of buried layers and interfaces with sub-nanometer depth resolution. In this article, I will discuss several promising future directions in this emergent field stemming from experimental and th...

متن کامل

Direct probing of the exchange interaction at buried interfaces.

The fundamental interactions between magnetic moments at interfaces have an important impact on the properties of layered magnetic structures. Hence, a direct probing of these interactions is highly desirable for understanding a wide range of phenomena in low-dimensional solids. Here we propose a method for probing the magnetic exchange interaction at buried interfaces using spin-polarized elec...

متن کامل

Photoemission measurements of Ultrathin SiO2 film at low take-off angles

The surface and interfacial analysis of silicon oxide film on silicon substrate is particularly crucial in the nano-electronic devices. For this purpose, series of experiments have been demonstrated to grow oxide film on Si (111) substrate. Then these films have been used to study the structure of the film by using X-ray photo emission spectroscopy (XPS) technique. The obtained results indicate...

متن کامل

Charge transfer quantification in a SnOx/CuPc semiconductor heterostructure: investigation of buried interface energy structure by photoelectron spectroscopies.

A tin oxide/copper phthalocyanine (CuPc) layer stack was investigated with two complementary photoemission methods. Non-destructive analysis of the electronic properties at the SnOx/CuPc interface was performed applying angle-dependent measurements with X-ray photoelectron spectroscopy (ADXPS) and energy-resolved photoemission yield spectroscopy (PYS). The different components (related to oxide...

متن کامل

Probing the Buried Magnetic Interfaces.

Understanding magnetism in ferromagnetic metal/semiconductor (FM/SC) heterostructures is important to the development of the new-generation spin field-effect transistor. Here, we report an element-specific X-ray magnetic circular dichroism study of the interfacial magnetic moments for two FM/SC model systems, namely, Co/GaAs and Ni/GaAs, which was enabled using a specially designed FM1/FM2/SC s...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 5  شماره 

صفحات  -

تاریخ انتشار 2015